Biodiesel and Renewable Diesel Research Study

October 14, 2008

California Environmental Protection Agency

Agenda

- I. Introductions
- II. Updates
 - a. Fuels
 - b. Engine/vehicle tests
- III. NOx Impact Study and NOx Mitigation Study (Dr. Tom Durbin)
 - a. Preliminary test
 - b. Engine dynamometer cycle development
 - c. Main test
 - d. Additives
 - e. Alternative fuel blends
 - f. Matched blending
- IV. Transportation Refrigeration Unit (TRU) biodiesel test program
- V. Open Discussion

Introductions

Background

- Executive Order S-1-07 Low Carbon Fuel Standard (LCFS)
 - Reduce at least 10 percent of the carbon intensity of California's transportation fuels by 2020.
 - Early action item with a regulation to be adopted and implemented by 2010.
- Executive Order S-06-06, establishing targets for the use and production of biofuels and biopower
 - Includes biodiesel and ethanol.
 - California shall produce a minimum of 20 percent of its biofuels within California by 2010, 40 percent by 2020, and 75 percent by 2050.

Background

- Low Carbon Fuels Standard
 - Biofuels specifications by 2009

- Biodiesel and renewable diesel emissions evaluation
- Oxides of Nitrogen (NOx) formation and mitigation evaluation
- Transportation Refrigeration Units (TRUs)
- Light duty vehicles
- Durability study
- Multi-Media evaluation

Updates

Fuels Update-Biodiesel Blend Fuel Specifications

- Oxidative stability EN 14112
 - All blends: 12 hours
- Blend level results (EN14078 IR results)
 - Soy (5%) 5.3, (20%) 20.8, (50%) 52.5
 - Animal (5%) 5.4, (20%) 21.2, (50%) 52.8

Fuels Update-Renewable Diesel Blends

- CECERT completed the blending in August
- Fuel analysis-in progress

Test Vehicle Update

- Vehicle one
 - Heavy-duty diesel truck equipped with a 2005
 Caterpillar C13 engine
- Vehicle two secured for testing
 - Heavy-duty diesel truck equipped with a 2007
 Detroit Diesel MBE 4000 engine
 - Engine/vehicle break in: minimum 3000 additional miles needed
- Vehicle three
 - Transit bus equipped with a Detroit Diesel 1997
 DDCs50 engine and with a Cleaire Longview

Biodiesel Characterization Vehicle One Chassis Test

- Pretest "dress rehearsal" completed
- Potential issue with vehicle
 - Excessive smoke and liquid oil out of blow by tube
- Plan to address issue
 - Identified vehicle was overfilled with lube oil by six quarts due to miscalibration of dipstick-dipstick recalibrated
 - Taken to dealer for service and diagnostic
 - · Identified valve issue which was repaired
 - · No other problems were identified
 - Undergoing oil consumption tests to confirm oil consumption is within Caterpillar's specifications
 - 60 gals of fuel per quart of lube oil
 - Test completed next week
 - Consultation with Caterpillar
- Alternative vehicle a truck equipped with a 2001 C15 Caterpillar engine

Discussion

NOx Impact Tests

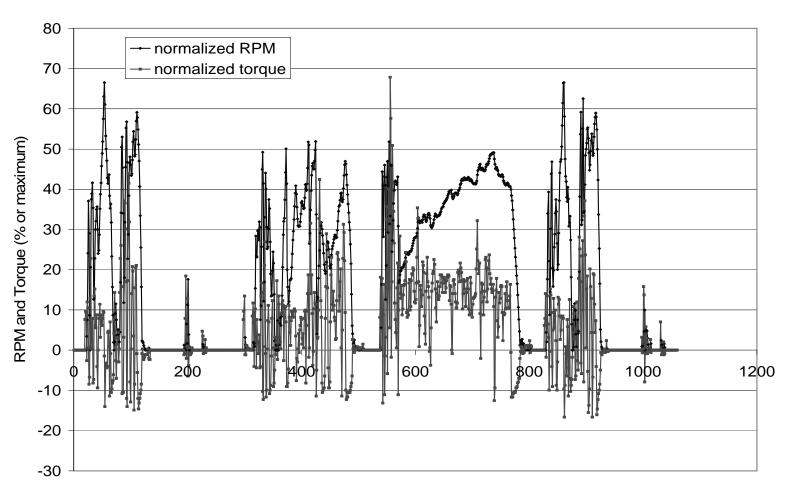
- Check list
 - Vehicle duty cycle translations
 - Coast down completed
 - Vehicle duty cycle translations
 - Remove engine from 2006 Cummins ISM
 - Tested converted duty cycles on engine dynamometer
 - Preliminary test
 - QA/QC completed
 - Began main engine tests in October

NOx Impact and NOx Mitigation Study

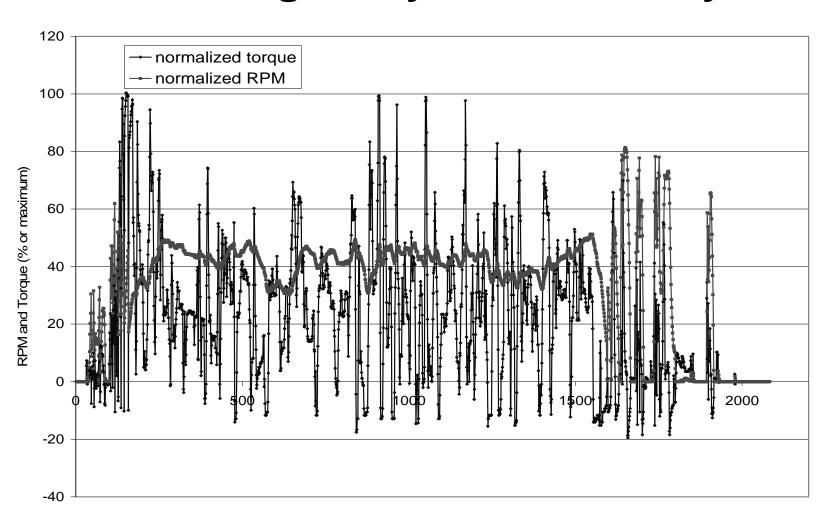
Dr. Tom Durbin
Principle Investigator
CECERT

Preliminary Test Runs

- 6 test runs in a single day on CARB ULSD and B20 Animal
- Results show
 - Emission differential B20 to ULSD of ~2% (1.8%) for NO_x
 - Coefficients of Variation (COVs) of ~1 %
 - Emissions values comparable to certification values

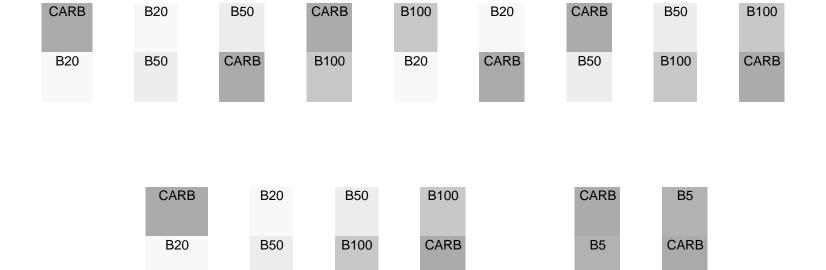

Draft Preliminary Test Results

0.289	0.757	2.108	0.078	632.492
1.1%	3.4%	1.0%	2.8%	0.7%
1.1/0	J.4 /0	1.070	2.0 /0	0.7 /0
0.250	0.692	2.146	0.061	637.065
1.8%	1.9%	0.8%	0.7%	0.6%
40.00/	0.60/	4.00/	04.00/	0.70/
-13.8% 0.000	-8.6% 0.000	1.8% 0.006	-21.2% 0.000	0.7% 0.089

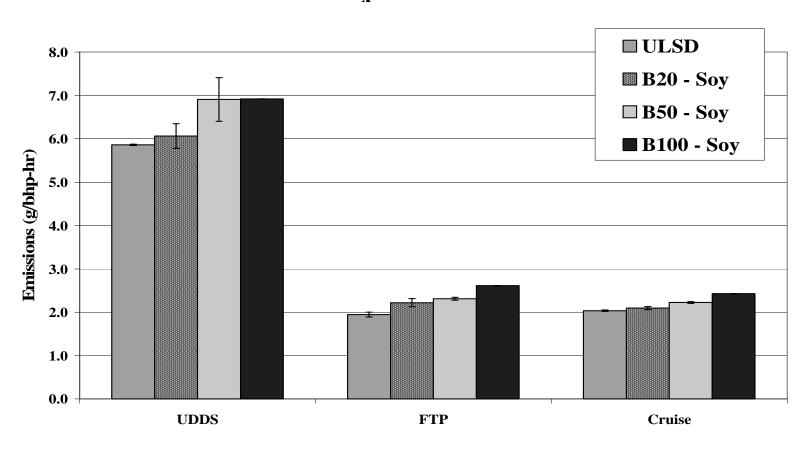

Engine Dynamometer Cycle Development

- Engine parameters (J1939) obtained from chassis dynamometer runs over the UDDS and Cruise cycles
 - UDDS was loaded at weight of truck cab only
 - Cruise was loaded at the full vehicle GVWR
- A single test run was selected to represent the set of engine parameter data collected
 - Based on NO_x emissions, deviation from the drive cycle, and examination of outliers
- Torque and RPM values normalized
- Cycles were optimized for the engine dyno
- New regression statistics criteria

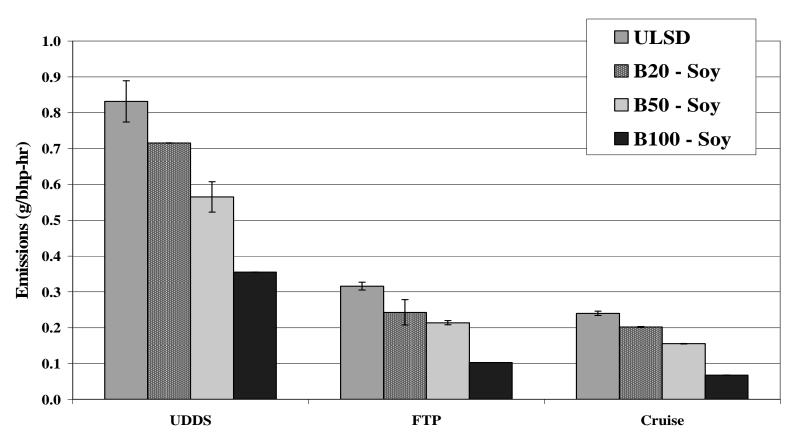
UDDS Engine Dynamometer Cycle


Cruise Engine Dynamometer Cycle

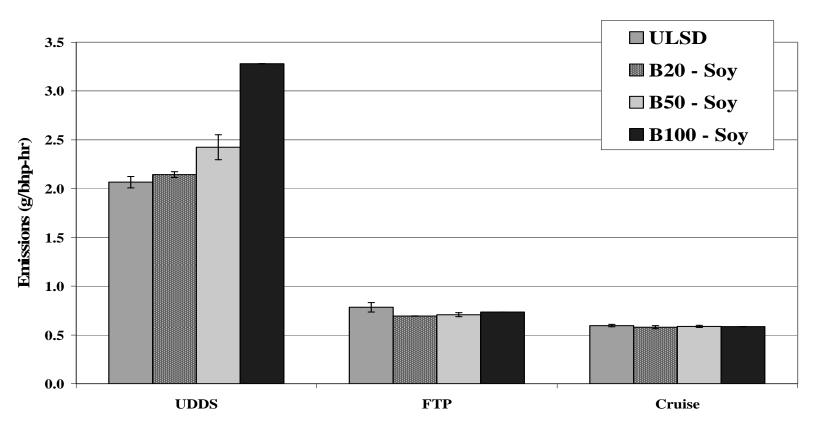
Initial Main Test Runs


- First round of testing on the soy-based feedstock
- Initial results show trends consistent with expectations
 - Increasing NO_x for the biodiesel blends
 - Decreasing PM for the biodiesel blends
 - Decreasing THC for the biodiesel blends

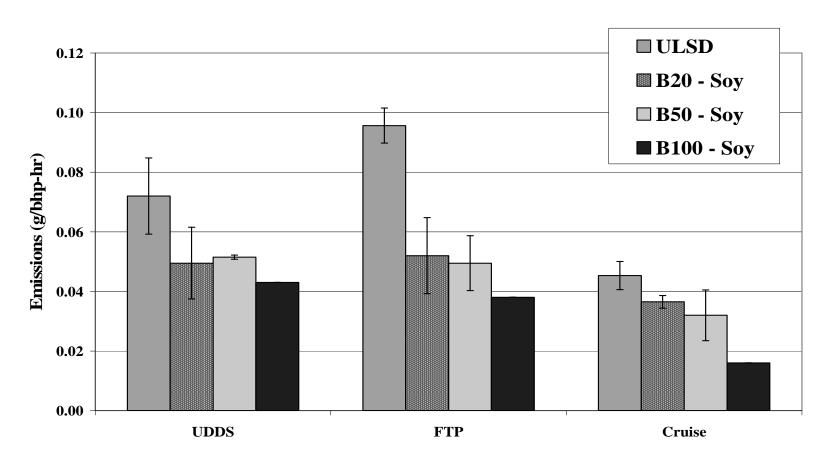
Soy Feedstock Test Matrix


Preliminary Draft Main Test Results

NO_x Emissions


Preliminary Draft Main Test Results

THC Emissions

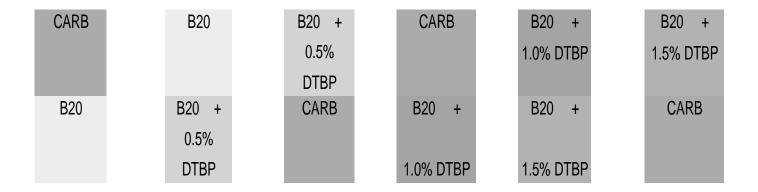

Preliminary Draft Main Test Results

CO Emissions

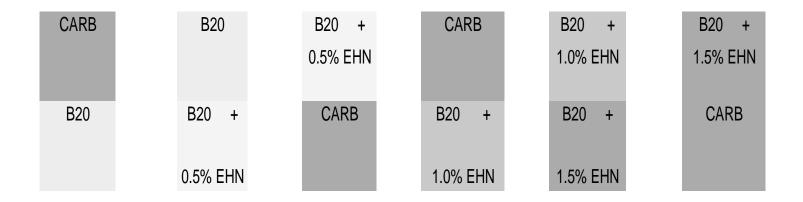
Very Preliminary Draft Main Test Results

PM Emissions

Discussion

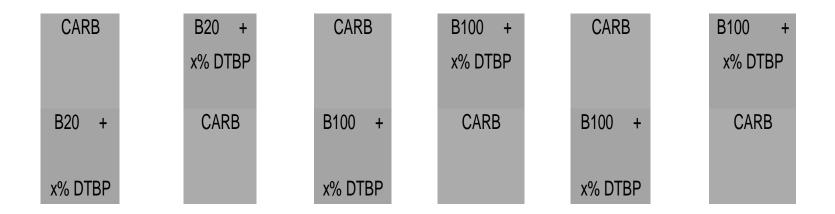

Strategies for NO_x Mitigation

- Additives
- Renewable/biodiesel blends
- GTL
- Match blending subsequent testing (phase 2)


Additive Testing

- 2- ethyl-hexyl-nitrate (EHN)
- Di-tert-butyl-peroxide (DTBP)
- Both additives have been studied by NREL and SwRI
- Initially explore effectiveness of different blends levels (0.5%, 1.0%, and 1.5%)
- Use B20 with highest NO_x disbenefit
- Additional testing as needed to look at cycle effects and higher blend levels

Initial Testing on DTBP


Initial Testing EHN

Further Additive Testing

- Look at the effects of additives
 - Utilize blend level that was successful in producing NO_x neutrality for a B20 on the FTP
 - Higher loads (ARB Cruise)
 - Higher levels of biodiesel (B100)

Further Additive Testing

Renewable/Biodiesel Blends

- Utilize different percentage of biodiesel and renewable diesel
- Results based on the renewable diesel tested in the biodiesel characterization portion of the study

Renewable/Biodiesel Testing

CARB	B20 Soy	Bx1 Ry1	CARB	Bx2 Ry2	Bx3 Ry3
B20 Soy	Bx1 Ry1	CARB	Bx2 Ry2	Bx3 Ry3	CARB

GTL Testing

- An appropriate GTL fuel has been identified for testing
- Test matrix will be developed based on existing test data

Discussion

Transportation Refrigeration Unit (TRU) Biodiesel Test Program

Program Objectives

- Support particulate matter (PM) emission reduction from diesel engines
- Support carbon dioxide (CO₂) emission reduction through low carbon fuel standard (LCFS)
- Quantify PM reductions and oxides of nitrogen (NO_X) emission increases due to use of biodiesel and biodiesel blends in small diesel engines used in TRUs and off-road applications

Testing Apparatus

- Dyne Systems Dynamometer
- Horiba Constant Volume Sampling System
- AVL Full Flow Particulate Sampling System
- AVL Exhaust Gas Analyzer System
- AVL Heated Flame Ionization Detector

Test Cell Ready Mid-November 2008

ISO 8178, Part 4, section 6.3.1, "Test cycle type C1, 'Off-road vehicles, industrial and medium/high load."

SPEED	TORQUE	8-Mode Wt.	4-Mode Wt.	
Rated	100 %	0.15	0	
Rated	75 %	0.15	0.25	
Rated	50 %	0.15	0.25	
Rated	10 %	0.10	0	
Intermediate	100 %	0.10	0	
Intermediate	75 %	0.10	0.25	
Intermediate	50 %	0.10	0.25	
Low-no-load	0 %	0.15	O 40	

Three Test Engines

- Engine No. 1
 - 1998 Kubota, 37.5 hp, Unregulated ("Tier 0")
- Engine No. 2
 - 1998 Isuzu, 34.8 hp, Unregulated ("Tier 0")
- Engine No. 3
 - 1995 Yanmar, 12.5 hp, SORE-II Certified

Six Test Fuels

- California Diesel Fuel
- Soy-Derived Biodiesel (B100_s)
- Animal-Derived Biodiesel (B100_A)
- Soy-Derived Biodiesel/California Diesel Fuel Blends
 - 50 percent biodiesel (B50_S)
 - 20 percent biodiesel (B20_S)
 - 5 percent biodiesel (B5_S)

Test Matrix

Series	Cycle	Engine	Fuels		
1	8-mode	No. 1	CA	B100 _S	
2	8-mode	No. 1	CA	B100 _A	
3	8-mode	No. 1	CA	B20 _S	B50 _S
4	8-mode	No. 1	CA	B5 _S	
5	4-mode	No. 2	CA	B100 _S	
6	4-mode	No. 2	CA	B100 _A	
7	4-mode	No. 3	CA	B100 _S	
8	4-mode	No. 3	CA	B100 _A	

Daily Test Sequence

- Morning
 - Run one 8-mode or two 4-mode tests on same engine with morning fuel (same fuel as afternoon fuel from the day before)
- Mid-day
 - Switch fuel filter and fuel
 - Run engine to purge morning fuel
- Afternoon
 - Run one 8-mode or two 4-mode tests on same engine with afternoon fuel (same fuel as morning fuel for next day)

Procedures

- Change Oil and Oil Filter Before Each New Test Series, Except for Test Series 4 (Series 3 and 4 Test Soy-Derived Blends)
- Use Dedicated Fuel Filters for Each Fuel
 - Engine No. 1
 - CA, B100_S, B100_A, B50_S, B20_S, B5_S
 - Engine No. 2
 - CA, B100_S, B100_A
 - Engine No. 3
 - CA, B100_S, B100_A

Procedures (Continued)

- Measure Emissions and Work for Each Mode
 - NO_X and nitrous oxide (N₂O)
 - PM
 - Hydrocarbons (HC)
 - Carbon Monoxide (CO) and (CO₂)
- Run at Least Eight Test Cycles on Each Fuel in Each Test Series, Trying to Determine Differences of Average Weighted NO_X Emissions to 0.5 % with 90 % Confidence

Discussion

Open Discussion

Biodiesel/Renewable Diesel Workgroup Meeting

- Tentatively planned for December 2nd at the CAL/EPA building
- Notice and agenda
- Include Tier one report and Tier two test protocol
- Guest speakers and panel discussion